© STD - 0431 - 2670142 FAX - 0431 - 2670143

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University) NH - 45, Trichy - Chennai Trunk Road,

SAMAYAPURAM, TRICHY - 621 112.

E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

COURSE PLAN

Subject code: EC8095

Branch/Year/Sem/Section: B.E ECE/III/VI

Subject Name: VLSI DESIGN

Batch:2017-2021

Staff Name: R.KEERTHIGA

Academic year:2019-2020

COURSE OBJECTIVE

- 1. Study the fundamentals of CMOS circuits and its characteristics.
- 2. Learn the design and realization of combinational & sequential digital circuits.
- 3. Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed.
- 4. Learn the different FPGA architectures and testability of VLSI circuits.

TEXT BOOK:

- 1. Neil H.E. Weste, David Money Harris —CMOS VLSI Design: A Circuits and Systems Perspectivel, 4th Edition, Pearson, 2017 (UNIT I,II,V)
- 2. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, |Digital Integrated Circuits: A Design perspective||, Second Edition, Pearson, 2016.(UNIT III,IV)

REFERENCES:

- 1. M.J. Smith, —Application Specific Integrated Circuits, Addisson Wesley, 1997
- 2. Sung-Mo kang, Chulwoo Kim —CMOS Digital Integrated Circuits: Analysis & Design 4th edition, 2013
- 3. Wayne Wolf, —Modern VLSI Design: System On Chipl, Pearson Education, 2007
- 4. R.Jacob Baker, Harry W.LI., David E.Boyee, —CMOS Circuit Design, Layout and

Simulation, Prentice Hall of India 2005.

WEB RESOURCES

W1: www.srmuniv.ac.in/openware_d_loads/u2L4.ppt

W2:http://cc.ee.ntu.edu.tw/~thc/course_mckt/note/note2.pdf

W3: www.cdeep.iitb.ac.in/nptel/Electrical%20.../Lec25(m4).html

TEACHING METHODOLOGIES:

≻ BB

- BLACK BOARD

> PPT

- POWER POINT PRESENTATION

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University)
NH - 45, Trichy - Chennai Trunk Road,

SAMAYAPURAM, TRICHY - 621 112.

E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

EC8095

VLSI DESIGN

L T P C

UNIT I

INTRODUCTION TO MOS TRANSISTOR

9

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, Non ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate, Scaling.

UNIT II

COMBINATIONAL MOS LOGIC CIRCUITS

9

Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls.

Power: Dynamic Power, Static Power, Low Power Architecture.

UNIT III SEQUENTIAL CIRCUIT DESIGN

9

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Monostable Sequential Circuits, Astable Sequential Circuits.

Timing Issues: Timing Classification Of Digital System, Synchronous Design.

UNIT IV DESIGN OF ARITHMETIC BUILDING BLOCKS AND SUBSYSTEM 9

Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed tradeoffs, Case Study:Design as a tradeoff.

Designing Memory and Array structures: Memory Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry.

UNIT V IMPLEMENTATION STRATEGIES AND TESTING

9

FPGA Building Block Architectures, FPGA Interconnect Routing Procedures. Design for Testability: Ad Hoc Testing, Scan Design, BIST, IDDQ Testing, Design for Manufacturability, Boundary Scan.

TOTAL: 45 PERIODS

Topic No	Topic Name	Books For reference	Page No	Teaching Methodology	No of periods required	Cumulative periods
UNIT I	UNIT I-	MOS TRAN	SISTOR P	RINCIPLE	(9)	
1.	NMOS and PMOS transistors	R1	05	BB	2	1
2.	Process parameters for MOS and CMOS	R1	45,	BB	1	2
3.	Electrical properties of CMOS circuits and device modeling	R1	51	BB	1	3
4.	Scaling principles and fundamental limits	R1	54	BB	1	4
5.	CMOS inverter	R1	18	BB	2	5
6.	Scaling & propagation delays	R1	20	BB	1	6
7.	Layout diagrams	R1	24	ВВ	1	7
8.	Stick diagram,	R1	26	BB	2	8
9.	Elmore's constant	T2	292	BB	2	9

LEARNING OUTCOME:

At the end of unit , the students will be able to $% \left\{ 1\right\} =\left\{ 1\right\} =$

• Understand the MOS transistor.

UNIT II		(9)				
10.	Examples of Combinational Logic Design	R1	215	ВВ	1	10
11.	Static CMOS design	R1	216	ВВ	2	11
12.	Pass transistor Logic	R1	232	ВВ	1	12
13.	Transmission gates	T2	280	ВВ	1	13
14.	Dynamic CMOS design	R1	216	ВВ	2	14

15.	Power dissipation	R1	228	BB,	1	15
16.	Low power design principles	Т1	242	ВВ	1	16
17.	Static power dissipation	Т1	246	ВВ	1	17
18.	Dynamic power dissipation	Т1	244	BB	1	18

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Understand the concept of combinational circuits
- Power dissipation

UNIT-II	I- SEQUENT	IAL LOG	IC CIRCUIT	'S	(9))
19.	Static and Dynamic Latches	R7	396	BB	1	19
20.	Registers, Pulse registers	R7	398	ВВ	1	20
21.	Timing issues, pipelines	R7	404-406	ВВ	1	21
22.	Sense amplifier based register	T1	287	BB	1	22
23.	clock strategies	R7	415	ВВ	1	23
24.	Memory architecture and memory control circuits	R7	424	BB	2	24
25.	Low power memory circuits	R7	431	BB	1	25
26.	Synchronous sequential circuits	R7	441	BB	1	26
27.	Asynchronous design circuits	R7	443	BB	1	27

LEARNING OUTCOME:

At the end of unit, the students will be able to

• Understand the concept of static and dynamic circuits.

UNIT-	UNIT-IV- DESIGNING ARITHMETIC BUILDING BLOCKS (9)					
28.	Data path circuits	Т2	166	ВВ	1	28
29.	Architectures for ripple carry adders	R1	303	ВВ	1	29
30.	carry look ahead adders	R1	304	BB	1	30
31.	High speed adders, Accumulators	R1	329	ВВ	1	31

32.	Memory architecture, memory peripheral circuitry	T1	318	ВВ	1	32
33.	Multipliers & dividers	R1	345	ВВ	2	33
34.	Barrel shifters	R1	343	ВВ	1	34
35.	Design tradeoff	R1	346	ВВ	1	35
36	Speed and area tradeoff	R1	363	ВВ	1	36

LEARNING OUTCOME:

At the end of unit, the students will be able to

- Understand the concept adders, multipliers
- Barrel shifters

UNIT-V	- IMPLEME	ENTATION	STRATEGI	ES	(9)
37.	Full custom and Semi custom design	T2	313	BB	1	37
38.	Standard cell design and cell libraries	T2	344	ВВ	1	38
39.	FPGA building block architectures	T2	319	ВВ	1	39
40.	FPGA interconnect routing	T2	923	ВВ	1	40
41.	Design for testability	T1	401	BB	1	41
42.	Adhoc-testing	T1	408	ВВ	1	42
43.	BIST,IDDQ testing	T1	412	BB	1	43
44.	Scan design, boundary scan	T1	416	BB	1	44
45.	Design for manufacturability	T1	417	BB		45

LEARNING OUTCOME:

At the end of unit, the students will be able to

• FPGA and ASIC

COURSE OUTCOME

At the end of the course, the student should be able to:

- characteristics of MOS transistor and fabrication techniques
- Knowledge about the combinational and sequential circuit functions.
- Capable to work with Xilinx software

CONTENT BEYOND THE SYLLABUS

ALTERA Quaratus 9.1

CONTINUES INTERNAL ASSESSMENT DETAILS

ASSESMENT NUMBER	I	II	MODEL
TOPIC NO.(UNIT)	1-18 (1 st & 2 nd units)	19-36 (3 rd & 4 th units)	1-45 (units 1-5)

ASSIGNMENT DETAILS

ASSIGNMENT NUMBER	I	II	III
TOPIC NUMBER FOR REFERENCE	1-18 (1 st & 2 nd units)	19-36 (3 rd & 4 th units)	1-45 (units 1-5)
DEAD LINE			

ASSIGNMENT	BATCH	DESCRIPTIVE QUESTIONS/TOPIC
NUMBER		(Minimum of 8 Pages)
	D1	1. Nmos transistor
I	B1	2. Fabrication techniques
		3. Cmos design circuits
		Examples of combinational circuits
\mathbf{II}	B1	2. Pass transistor logic
	D1	3. Design multiplexer with transmission gates.
III	B1	1. FPGA Architectures
***	D1	2. Xilinx functions
		3. ASIC implementations

PREPARED BY VERIFIED BY

R.KEERTHIGA, AP/ECE HOD/ECE

APPROVED BY

PRINCIPAL